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We investigate the generalized synchronization between two unidirectionally linearly and nonlinearly
coupled chaotic nonidentical Ikeda models and find existence conditions of the generalized synchronization.
Also we study the chaos synchronization between nonidentical Ikeda models with variable feedback-delay
times and find the existence and sufficient stability conditions for the retarded synchronization manifold with
the coupling-delay lag time. Generalization of the approach to the wide class of nonlinear chaotic systems is
also presented.
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I. INTRODUCTION

Chaos synchronization[1] is of fundamental importance
in a variety of complex physical, chemical, and biological
systems[2]. Possible application areas of chaos synchroniza-
tion are in secure communications, optimization of nonlinear
system performance, modeling brain activity, and pattern
recognition phenomena[2].

Different types of synchronization have been found in in-
teracting chaotic systems. Complete, generalized, phase, lag,
and anticipating synchronizations of chaotic oscillators have
been described theoretically and observed experimentally.
Complete synchronization is characterized by the conver-
gence of two chaotic trajectories,ystd=xstd [1]. Generalized
synchronization is defined as the presence of some functional
relation between the states of response and drive—i.e.,ystd
=F(xstd) [3]. Phase synchronization means entrainment of
phases of chaotic oscillators,nFx−mFy=const(n andm are
integers), while their amplitudes remain chaotic and uncor-
related[4]. Lag synchronizationfor the first timewas intro-
duced by Rosenblumet al. [5] under certain approximations
in studying synchronization betweenbidirectionally coupled
systems described by the ordinary differential equations(no
intrinsic delay terms) with parameter mismatches: ystd
<xtstd;xst−td with positive t. Anticipating synchroniza-
tion [6–8] also appears as a coincidence of shifted-in-time
states of two coupled systems, but in this case the driven
system anticipates the driver,ystd=xst+td or x=yt ,t.0. An
experimental observation of anticipating synchronization in
external cavity laser diodes[9] has been reported recently;
see also[10] for a theoretical interpretation of the experi-
mental results. The concept of inverse anticipating synchro-
nizationx=−yt was introduced in[11].

Due to finite signal transmission times, switching speeds,
and memory effects, time-delayed systems are ubiquitous in
nature, technology, and society[12]. Therefore the study of

synchronization phenomena in such systems is of high prac-
tical importance. Time-delayed systems are also interesting
because the dimension of their chaotic dynamics can be
made arbitrarily large by increasing their delay time. From
this point of view these systems are especially appealing for
secure communication schemes[13].

The role of parameter mismatches in synchronization phe-
nomena is quite versatile. In certain cases parameter mis-
matches are detrimental to the synchronization quality: in the
case of small parameter mismatches the synchronization er-
ror does not decay to zero with time, but can show small
fluctuations about zero or even a nonzero mean value; larger
values of parameter mismatches can result in the loss of syn-
chronization [8,14]. In some cases parameter mismatches
change the time shift between the synchronized systems[15].
In certain cases their presence is necessary for synchroniza-
tion. We emphasize that the crucial role of parameter mis-
matches for lag synchronization betweenbidirectionally
coupled systems was first studied in[5] by Rosenblumet al.
As such, lag synchronization cannot be observed if two os-
cillators are completely identical; see, e.g.,[16] and refer-
ences therein.

In a recent paper[17] the complete and generalized syn-
chronizations of one-way, linearly coupled the Mackey-Glass
systems is studied. The authors of[17] numerically investi-
gated the largest conditional Lyapunov exponent of the com-
plete synchronization manifold to find the necessary exis-
tence conditions of the mode of synchronizations in the
Mackey-Glass system. In this paper we analytically investi-
gate the generalized synchronization between two unidirec-
tionally both linearly and nonlinearly coupled chaotic Ikeda
models. We use a powerful Krasovskii-Lyapunov functional
approach to derive existence conditions of the generalized
synchronization in time-delayed systems. Numerical simula-
tions fully support the analytical approach. Generalization of
the approach to the wide class of nonlinear systems is also
presented.

Also we investigate chaos synchronization between non-
identical Ikeda models with variable feedback-delay times
and find both existence and sufficient stability conditions for*Electronic address: shahverdiev@physics.ab.az
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the retarded synchronization manifold with the coupling-
delay lag time. It is of immense interest to study chaos and
synchronization in time-delayed systems with variable
feedback-delay times. The basic interest is driven by the fact
that there is little research on this important subject in the
literature[18,19]. The practical interest is motivated by the
appreciation that time-delayed systems with variable delay
times are more realistic and would have important implica-
tions for more secure communication schemes[19].

II. GENERALIZED SYNCHRONIZATION BETWEEN THE
LINEARLY COUPLED IKEDA SYSTEMS

Consider synchronization between the linearly coupled
Ikeda systems,

dx

dt
= − a1x + m1 sinxt1

, s1d

dy

dt
= − a2y + m2 sinyt2

+ Ksx − yd. s2d

The Ikeda model was introduced to describe the dynamics of
an optical bistable resonator and is well known for delay-
induced chaotic behavior[6,11,20]. It also plays an important
role in electronics and physiological studies[6]. Physicallyx
is the phase lag of the electric field across the resonator,a1,2
are the relaxation coefficients for the drivingx and driveny
dynamical variables(without loss of generality we assume
a1=a−d, a2=a+d), and m1,2 are the laser intensities in-
jected into the systems.t1 andt2 are the round-trip times of
the light in the resonators or feedback delay times in the
coupled systems;K is the coupling rate between the driverx
and the response systemy.

In this section we will investigate kind of synchroniza-
tions depending ont1, t2 anda1, a2. First consider the case
of synchronization depending ont1 andt2 sa1=a2=ad. We
begin with the case of complete synchronization fort1=t2:

x = y. s3d

We denote the error signal byD=x−y. Then from systems
(1) and (2) we find the error dynamicsdD /dt=−sa+KdD
+m1 sinxt1

−m2 sinyt1
. Thus, under the condition

m1 = m2, s4d

the error dynamics can be written as

dD

dt
= − sa + KdD − Dt1

m1 cosxt1
. s5d

It is obvious thatD=0 is a solution of system(5). To study
the stability of the complete synchronization manifoldy=x
one can use a Krasovskii-Lyapunov functional approach. Ac-
cording to[12,6,21], the sufficient stability condition for the
trivial solution D=0 of the time-delayed equationdD /dt
=−rstdD+sstdDt is rstd. usstdu. This can be found by inves-
tigating the positively defined Krasovskii-Lyapunov
fuctional

Vstd =
1

2
D2 + mE

−t

0

D2st + t1ddt1, s6d

wherem.0 is an arbitrary positive parameter. As shown in
[12,6,21], the solutionD=0 is stable if the derivative of the
functional (6) along the trajectory of the equationdD /dt
=−rstdD−sstdDt is negative. In general this negativity condi-
tion is of the form 4sr −mdm.s2 andr .m.0. As the value
of m that will allow s2 as large as possible ism=r /2, the
asymptotic stability condition forD=0 can be written as

r2 . s2, s7d

which is equivalent tor . usu. This result is valid for both
constant and time-dependent coefficientsr ands [in the latter
caserstd and sstd should be bounded continuous functions
[12]].

We notice that one can still use the functional(6) to esti-
mate the sufficient stability condition for the trivial solution
D=0 of the time-delayed equationdD /dt=−rstdD+sstdDt,
which is rstd. usstdu for time-dependentt [12]. Namely, as
presented in[12], whent=tstd is continuously differentiable
and bounded, the solutionD=0 todD /dt=−rstdD−sstdDtstd is
uniformly asymptotically stable ifastd.m.0 and f2rstd
−mgs1−dt /dtdm.s2std uniformly in t. Applying the same
procedure as in the case of constant feedback-delay time, we
can find the value ofm that will allow s2 to be as large as
possible:m=r. Thus we find that the sufficent stability con-
dition for theD=0 solution of the time delay equation with
time-dependent coefficientsdD /dt=−rstdD−sstdDtstd is

r2stdS1 −
dtstd

dt
D . s2std. s8d

Note that for the constant-delay-time cases the inequality(8)
is reduced to the well-known sufficient stability conditionr
. usu [21,6,11].

Thus we obtain that the sufficient stability condition for
the complete synchronization manifoldy=x for Eqs.(1) and
(2) can be written as

a + K . um1u. s9d

As Eq. (5) is derived for smallD, condition (9) it is valid
only locally. Condition (4) is the existence condition for
complete synchronization between the unidirectionally
coupled systems(1) and (2). Condition(9) can also be used
for the estimation of the critical coupling strengthK needed
for the high-quality synchronization[21].

Next we consider the case oft1Þt2. From the analysis
above it is clear that complete synchronization is not the
synchronization manifold for systems with different values
of feedback delay times. Then for such a case we study the
possibility of generalized synchronization between the driver
and driven systems(1) and (2). For this purpose we use the
auxiliary system method to detect generalized synchroniza-
tion [3,17]: that is, given another identical driven auxiliary
systemzstd, generalized synchronization betweenxstd and
ystd is established with the achievement of complete syn-
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chronization betweenystd and zstd. In fact, the auxiliary
method allows us to find the local stability condition of the
generalized synchronization[17].

Thus consider complete synchronization between the fol-
lowing Ikeda systems:

dy

dt
= − ay + m2 sinyt2

+ Ksx − yd, s10d

dz

dt
= − az+ m2 sinzt2

+ Ksx − zd. s11d

Applying the error dynamics approach described above for
the case of complete synchronization we find complete syn-
chronization between theystd andzstd; therefore, generalized
synchronization between systems(1) and (2) exists if

a + K . um2u. s12d

Equation(12) in fact is the local sufficient stability condition
for the generalized synchronization between systems(1) and
(2). We note that using the error dynamics approach above it
is straightforward to study generalized synchronization be-
tween systems(1) and (2) for m1Þm2.

Finally in this section we present an example of the lin-
early coupled Ikeda model when parameter mismatches for
the relaxation coefficients is the only way to achieve syn-
chronization. Consider synchronization between the Ikeda
systems

dx

dt
= − a1x + msinxt1

,

dy

dt
= − a2y + msinyt1

+ Kxt2
. s13d

First we consider the case of constant feedback-delay time
and show thaty=xt2

is the retarded synchronization manifold
if the parameter mismatcha2−a1=2d is equal to the cou-
pling rateK [22]. This can be seen by the dynamics of the
error D=xt2

−y:

dD

dt
= − sa + ddD + s2d − Kdxt2

+ mcosxt1+t2
Dt1

. s14d

The sufficient stability condition for the retarded synchroni-
zation manifold y=xt2

can be written asa+d=a2. umu.
Thus, we find that the retarded chaos synchronization mani-
fold y=xt2

occursonly under parameter mismatch—i.e.,a1

Þa2. By analyzing the corresponding error dynamics one
can also establish that without the parameter mismatch—i.e.,
a1=a2=a—neithery=xt2−t1

nor y=xt1−t2
is the synchroni-

zation manifold. We also emphasize that for botha1=a2 and
a1Þa2 system(13) admits neither complete(we notice that
for special case oft2=0 y=xt2

is the complete synchroniza-
tion manifold, which exists ifa1Þa2) nor anticipatingchaos
synchronization. We emphasize that this result is due to the
linear coupling between the synchronized systems. The im-
portance of the role of the form of coupling between the
synchronized systems is underlined in[6]. In the case of
nonlinear (sinusoidal) coupling for identical drive and re-

sponse Ikeda systems, depending on the relation between the
feedback delay time and the coupling delay time retarded,
complete or anticipating synchronization can occur; see, e.g.,
[23] and references therein.

Next we consider the case of time-dependent delay time
t1std. First we notice that as in the case of time-independent
delay times 2d=K is the condition of existence for they
=xt2

synchronization manifold. Next applying the general
formula (8) derived earlier in the paper we write the suffi-
cient stability condition for the synchronization manifoldy
=xt2

in the following form:

a2
2S1 −

dt1std
dt

D . m2. s15d

As an example consider the following sinusoidal form of the
variable delay time:

t1std = t0 + ta sin svtd, s16d

wheret0 is the zero-frequency component,ta is the ampli-
tude, andv /2p is the frequency of the modulation. Then for
the concrete form of variable delay time(16) the sufficient
stability condition(15) can be written as

a2
2f1 − tav cossvtdg . m2. s17d

Numerical simulations fully confirm the analytical results.
Eqs.(1), (2), (10), and(11) were simulated using theDDE23
program [24] in MATLAB 6 for a=5, t1=1, t2=2, m1=m2
=20, andK=30. Figure 1 shows the time series of the driver
xstd. Figure 2 shows generalized synchronization betweenx
andy.

III. GENERALIZED SYNCHRONIZATION BETWEEN THE
NONLINEARLY COUPLED IKEDA SYSTEMS

In this section we study synchronization between the fol-
lowing nonlinearly coupled Ikeda systems:

FIG. 1. Numerical simulation of the Ikeda model[Eq. (1)]: time
series of the driverxstd.The parameters of the Ikeda model aret1

=1, a=5, andm1=20. Dimensionless units.
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dx

dt
= − ax + m1 sinxt1

, s18d

dy

dt
= − ay + m2 sinyt2

+ K sinxt3
. s19d

As established in[23], for t1=t2 under conditions

m1 = m2 + K, s20d

systems(18) and(19) allow for the synchronization manifold

y = xt3−t1
. s21d

The stability condition of the synchronization manifold(21)
was derived using the error dynamics approach and the
Krasovskii-Lyapunov functional:

a . um2u. s22d

We note that fort3.t1, t3=t1, andt3,t1, Eq. (21) is the
retarded, complete, and anticipating synchronization mani-
fold [11,23], respectively.

For t1Þt2 obviously the manifold(21) is longer no the
synchronization manifold. To investigate generalized syn-
chronization betweenx andy variables we have to consider
complete synchronization between the systems:

dy

dt
= − ay + m2 sinyt2

+ K sinxt3
, s23d

dz

dt
= − az+ m2 sinzt2

+ K sinxt3
. s24d

One finds thaty=z is the complete synchronization manifold
between systems(23) and(24). The corresponding sufficient
synchronization condition readsa. um2u. We conclude that
for t1=t2 we find complete synchronization between sys-
tems(18) and(19); for t1Þt2, one observes generalized syn-
chronization between systems(18) and(19). Equations(18),
(19), (23), and (24) were simulated fora=5, t1=1, t2=2,
t3=3, m1=20, m2=3, andK=17. Figure 3 shows the gener-
alized synchronization betweenxt3−t1

andy.

IV. GENERAL APPROACH

Consider complete synchronization between the linearly
coupled time-delayed systems of general form

dx

dt
= − ax + m1fsxt1

d, s25d

dy

dt
= − ay + m2fsyt2

d + Ksx − yd, s26d

where f is differentiable generic nonlinear function.
One finds that fort1=t2 under the condition

m1 = m2, s27d

Eqs.(25) and(26) admit the complete synchronization mani-
fold

FIG. 2. Numerical simulation of systems(1) and (2): general-
ized synchronization betweenx and y. The parameters aret1=1,
t2=2, a=5, m1=20, m2=20, andK=30. Dimensionless units.

FIG. 3. Numerical simulation of systems(18) and (19): gener-
alized synchronization betweenxt3−t1

and y. The parameters are
t1=1, t2=2, t3=3, a=5, m1=20,m2=3, andK=17. Dimensionless
units.
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y = x. s28d

The sufficient stability condition of Eq.(28) can be derived
from the Krasovskii-Lyapunov functional approach:

a + K . um1f8sxt1
du. s29d

Here f8 stands for the derivative off with respect to time.
For t1Þt2, Eq. (28) is no longer the synchronization mani-
fold.

To investigate generalized synchronization between sys-
tems(25) and(26) we apply an auxiliary system approach to
investigate complete synchronization between systems:

dy

dt
= − ay + m2fsyt2

d + Ksx − yd, s30d

dz

dt
= − az+ m2fszt2

d + Ksx − zd. s31d

We find that the complete synchronization manifoldy=z be-
tween systems(30) and (31) is stable under the condition
a. um1f8syt2

du. This is also the existence condition of gener-
alized synchronization between systems(25) and (26).

Next consider a situation where a time-delayed chaotic
master(driver) system

dx

dt
= − a1x + m1fsxt1

d s32d

drives a nonidentical slave(response) system

dy

dt
= − a2y + m2fsyt1

d + Kxt2
. s33d

By investigating the error signalD=xt2
−y dynamics we find

that under the conditionsa2−a1=K, m1=m2 y=xt2
is the

synchronization manifold and the manifold is sufficiently
stable if a2. uk1f8sxt1+t2

du. We note that systems(32) and
(33) admit the retarded chaos synchronization manifoldy
=xt2

only under parameter mismatch—i.e.,a1Þa2. We also
notice that without the parameter mismatch—i.e.,a1=a2
=a—neither y=xt2−t1

nor y=xt1−t2
is the synchronization

manifold. Moreover, in general for botha1=a2 anda1Þa2
systems(32) and (33) admit neither complete nor anticipat-
ing chaossynchronization.

In the case of time-dependent feedback-delay timet1std
analysis of the error dynamics for the retarded synchroniza-
tion manifold y=xt2

shows that the existence conditionsa2

−a1=K and m1=m2, y=xt2
hold also for the variable feed-

back delay case. The sufficient stability condition for the
time-delayed equations(32) and (33) with time-dependent
feedback delayt1std can be written as

a2
2 S1 −

dt1std
dt

D . fm1f8sxt1std+t2
dg2. s34d

Finally considering complete synchronization between the
nonlinearly coupled time-delayed systems,

dx

dt
= − ax + m1fsxt1

d, s35d

dy

dt
= − ay + m2fsyt2

d + Kfsxt3
d, s36d

it is straightforward to establish that fort1=t2, under the
condition

m1 − K = m2, s37d

Eqs.(35) and (36) admit the synchronization manifold

y = xt3−t1
. s38d

The sufficient stability condition of the synchronization
manifold (38) is a. um2f8sxt3

du. As for t1Þt2, Eq. (38) is
not a synchronization manifold; we investigate the case of
generalized synchronization by studying the possibility of
complete synchronization between the following systems:

dy

dt
= − ay + m2fsyt2

d + Kfsxt3
d, s39d

dz

dt
= − az+ m2fszt2

d + Kfsxt3
d. s40d

The complete synchronizationy=z is stable under the con-
dition a. um2f8syt2

du. Under this condition there is general-
ized synchronization between systems(35) and (36).

V. CONCLUSIONS

We conclude the paper with the following remarks. Usu-
ally parameter mismatches are considered to have a detri-
mental effect on the synchronization quality between
coupled identical systems; larger values of parameter mis-
matches can even result in the loss of synchronization[8,14].
However, it appears that in reality the relation between chaos
synchronization in time-delayed systems and parameter mis-
matches is quite intricate and complex. In[15] it was shown
that parameter mismatches can change the time shift between
the synchronized states.(Knowledge of the time shift be-
tween the synchronized states is of considerable practical
importance for the message recovery and information pro-
cessing using chaos control methods.) In [10] we have dem-
onstrated that perfect anticipating synchronization between
two bidirectionally coupled external cavity laser diodes is
possible in the presence of parameter mismatches. In this
paper we have studied the relation between parameter mis-
matches and complete and generalized synchronizations us-
ing the powerful Krasovskii-Lyapunov functional approach.
In the example of two unidirectionally both linearly and non-
linearly coupled chaotic nonidentical Ikeda systems we have
shown that the presence of parameter mismatches can change
the mode of synchronization from a complete to a general-
ized one. Most importantly we have derived sufficient exis-
tence conditions for the generalized synchronization. We
have also investigated chaos synchronization in variable de-
lay time systems and found both existence and sufficient
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stability conditions for the retarded synchronization manifold
with the coupling-delay lag time.

These results are of certain importance in the context of
relations between parameter mismatches, coupling types, and
mode of synchronizations. Recent studies have disclosed that
secure communication schemes based on both low- and
high-dimensional chaotic systems using a nongeneralized
mode of synchronization and systems without delay-time
modulations are vulnerable; see, e.g.,[25,19] and references
there in. In light of this, the investigation of generalized syn-
chronization in time-delayed systems and a synchronization

study between systems with delay-time modulations are also
important from the application point of view[26,19].
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