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Generalized synchronization in time-delayed systems
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We investigate the generalized synchronization between two unidirectionally linearly and nonlinearly
coupled chaotic nonidentical lkeda models and find existence conditions of the generalized synchronization.
Also we study the chaos synchronization between nonidentical Ikeda models with variable feedback-delay
times and find the existence and sufficient stability conditions for the retarded synchronization manifold with
the coupling-delay lag time. Generalization of the approach to the wide class of nonlinear chaotic systems is
also presented.
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[. INTRODUCTION synchronization phenomena in such systems is of high prac-
tical importance. Time-delayed systems are also interesting
. ; : : . "~ because the dimension of their chaotic dynamics can be
in a variety of cgmplex physlcal, chemical, and b|olog|(_:al made arbitrarily large by increasing their delay time. From
systemg2]. Possible application areas of chaos synchronizag,is noint of view these systems are especially appealing for
tion are in secure communications, optimization of nonlinealyecjre communication schenfas.
system performance, modeling brain activity, and pattern The role of parameter mismatches in synchronization phe-
recognition phenomengz]. nomena is quite versatile. In certain cases parameter mis-
Different types of synchronization have been found in in-matches are detrimental to the synchronization quality: in the
teracting chaotic systems. Complete, generalized, phase, lagase of small parameter mismatches the synchronization er-
and anticipating synchronizations of chaotic oscillators haveor does not decay to zero with time, but can show small
been described theoretically and observed experimentallyluctuations about zero or even a nonzero mean value; larger
Complete synchronization is characterized by the convervalues of parameter mismatches can result in the loss of syn-
gence of two chaotic trajectorieg(t) =x(t) [1]. Generalized chronization[8,14]. In some cases parameter mismatches
synchronization is defined as the presence of some functionghange the time shift between the synchronized sysf&bjs
relation between the states of response and drive—yi®., [N certain cases t_heir presence is necessary for synchron_iza-
=F(x(t)) [3]. Phase synchronization means entrainment ofion. We emphasize that the crucial role of parameter mis-
phases of chaotic oscillatonsp,-m®, =const(n andm are matclh%s for lag syn?hronlzgyodn bgtweélldlrgi:tlonall?/
integers, while their amplitudes remain chaotic and uncor_coupehslystems v;/]as Irst studie [51 B/R%sen Ud”ﬁt al.
related[4]. Lag synchronizatiotior the first timewas intro- As such, lag synchronization cannot be observed if two os-

duced by Rosenbluret al. [5] under certain approximations cillators are completely identical; see, e.gLp] and refer-
) ; o L ences therein.
in studying synchronization betwedidirectionally coupled

. . : . : In a recent papefl7] the complete and generalized syn-
systems described by th.e ordinary d|fferer_1t|al equatiows chronizations of one-way, linearly coupled the Mackey-Glass
intrinsic delay termp with parameter mismatchesy(t)

~x.(f)=x(t-7) with positive 7. Anticipating synchroniza- systems is studied. The authors[@f/] numerically investi-
T 6_ IT P e 'dp 9 fyh'ft dein-ti gated the largest conditional Lyapunov exponent of the com-
tion [6-§| also appears as a coincidence of shifted-In-ime&, 1o gy nchronization manifold to find the necessary exis-
states of two coupled systems, but in this case the drive

¢ ticinates the driver(t) = x(t+ . 20 A nce conditions of the mode of synchronizations in the
system anticipates the river )_?((, T? OrX=y,, 7=U. AN Mackey-Glass system. In this paper we analytically investi-
experimental observation of anticipating synchronization in

. . gate the generalized synchronization between two unidirec-
external cavity laser diodef9] has been reported recently; ionally hoth linearly and nonlinearly coupled chaotic Ikeda
see also[10] for a theoretical interpretation of the experi- ,14els. We use a powerful Krasovskii-Lyapunov functional
mental results. The concept of inverse anticipating synchrognnrqach to derive existence conditions of the generalized
hizationx=-y. was introduced irf11]. synchronization in time-delayed systems. Numerical simula-

Due to finite signal transmission times, switching speedsyiqns f,ily support the analytical approach. Generalization of
and memory effects, time-delayed systems are ubiquitous ife anproach to the wide class of nonlinear systems is also
nature, technology, and society2]. Therefore the study of presented.

Also we investigate chaos synchronization between non-
identical lkeda models with variable feedback-delay times
*Electronic address: shahverdiev@physics.ab.az and find both existence and sufficient stability conditions for

Chaos synchronizatiof] is of fundamental importance
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the retarded synchronization manifold with the coupling- 5 0 5
delay lag time. It is of immense interest to study chaos and V(t) = EA + MJ A%t +ty)dty, (6)
synchronization in time-delayed systems with variable T

feedback-delay times. The basic interest is driven by the faqvhere,u>0 is an arbitrary positive parameter. As shown in
that there is little research on this important subject in thﬁlz 6,21, the solutionA=0 is stable if the derivative of the
Iiteratu_re[_l&lq. The practical interest is motivatgd by the ¢ nctional (6) along the trajectory of the equatichd/dt
appreciation that time-delayed systems with variable dela\é—r(t)A—s(t)A is negative. In general this negativity condi-
times are more realistic and would have important implica-tion is of the f(;rm 4r— ) > andr > u>0. As the value

tions for more secure communication scherfe. of u that will allow s* as large as possible jg=r/2, the
asymptotic stability condition foA=0 can be written as

Il. GENERALIZED SYNCHRONIZATION BETWEEN THE

LINEARLY COUPLED IKEDA SYSTEMS r’>e, 7
Consider synchronization between the linearly coupledvhich is equivalent tar>|s|. This result is valid for both
Ikeda systems, constant and time-dependent coefficiengéds [in the latter
) caser(t) and s(t) should be bounded continuous functions
X
W alX + ml SinXT ’ (l) [12]] . . . .
dt 1 We notice that one can still use the functio@ to esti-
mate the sufficient stability condition for the trivial solution
dy _ A=0 of the time-delayed equatiodA/dt=-r(t)A+s(t)A,,
gt ey tmesiny;, + K(x-y). (2)  which isr(t)>]|s(t)| for time-dependent- [12]. Namely, as

presented ii12], whenr=1(t) is continuously differentiable

The Ikeda model was introduced to describe the dynamics aind bounded, the solutiah=0 todA/dt=-r(t)A—s(t)A ) is
an optical bistable resonator and is well known for delay-uniformly asymptotically stable ifa(t)> x>0 and [2r(t)
induced chaotic behavi¢6,11,2Q. It also plays an important - 4](1-d+/dt)u>s(t) uniformly in t. Applying the same
role in electronics and physiological studi€§. Physicallyx  procedure as in the case of constant feedback-delay time, we
is the phase lag of the electric field across the resonafer, can find the value ofx that will allow 2 to be as large as
are the relaxation coefficients for the drivimgand driveny  possible:u=r. Thus we find that the sufficent stability con-
dynamical variablegwithout loss of generality we assume dition for the A=0 solution of the time delay equation with
@ =a=6, w=a+d), andm,, are the laser intensities in- time-dependent coefficienti /dt=-r(t)A-s(t)A 4 is
jected into the systems; and r, are the round-trip times of
the light in the resonators or feedback delay times in the 5 d(t)
coupled system< is the coupling rate between the driver r ('f)(l - ?> > SA(1). (8)
and the response systgm

In this section we will investigate kind of synchroniza- Note that for the constant-delay-time cases the inequiity

tions depending om, 7, and ay, a,. First consider the case s reduced to the well-known sufficient stability condition
of synchronization depending an and r, (a;=a,=a). We >|s| [21,6,11].

begin with the case of complete synchronization for 7,: Thus we obtain that the sufficient stability condition for
: the complete synchronization manifojéx for Egs.(1) and
X=y. (3 (2) can be written as
We denote the error signal by=x-y. Then from systems +K > |my 9
(1) and (2) we find the error dynamicslA/dt=-(a+K)A @ 1l
+my sinx; —mp siny.... Thus, under the condition As Eq. (5) is derived for smallA, condition (9) it is valid
_ 4 only locally. Condition(4) is the existence condition for
My =My, ) complete synchronization between the unidirectionally
the error dynamics can be written as coupled systemgl) and(2). Condition(9) can also be used
for the estimation of the critical coupling strengthneeded
dA for the high-quality synchronizatiof21].
at (a+K)A=A; m coSX,. (5) Next we consider the case of # r,. From the analysis

above it is clear that complete synchronization is not the
It is obvious thatA=0 is a solution of systen®). To study  synchronization manifold for systems with different values
the stability of the complete synchronization manifgldx  of feedback delay times. Then for such a case we study the
one can use a Krasovskii-Lyapunov functional approach. Acpossibility of generalized synchronization between the driver
cording to[12,6,21, the sufficient stability condition for the and driven systemgl) and(2). For this purpose we use the
trivial solution A=0 of the time-delayed equatiodA/dt  auxiliary system method to detect generalized synchroniza-
=—r(t)A+s(t)A, is r(t)>|s(t)|. This can be found by inves- tion [3,17]: that is, given another identical driven auxiliary
tigating the positively defined Krasovskii-Lyapunov systemz(t), generalized synchronization betweg(t) and
fuctional y(t) is established with the achievement of complete syn-
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chronization betweery(t) and z(t). In fact, the auxiliary
method allows us to find the local stability condition of the

generalized synchronizatidi 7]. 3f
Thus consider complete synchronization between the fol-
lowing Ikeda systems: 2
dy .
gt - -y rmesiny, +K(x-y), (10) 1

dz .
— =—az+m,sinz, +K(x-2). (11)
dt 2

-1}
Applying the error dynamics approach described above for
the case of complete synchronization we find complete syn-
chronization between thgt) andz(t); therefore, generalized
synchronization between systerfly and(2) exists if

0(+K>|m2|. (12) ) 1 2 3 4 5 ] \ 7 8 [ 10

Equation(12) in fact is the local sufficient stability condition FIG. 1. Numerical simulation of the Ikeda modé&. (1)]: time
for the generalized synchronization between syst€éinand  series of the drivex(t).The parameters of the lkeda model age
(2). We note that using the error dynamics approach above #1, ¢=5, andm,=20. Dimensionless units.

is straightforward to study generalized synchronization be-

tween systemgl) and(2) for m; # m,. _sponse Ikeda systems, depending on the relation between the
Finally in this section we present an example of the lin-tge4pnack delay time and the coupling delay time retarded,

early coupled lkeda model when parameter mismaiches fQt,qhjete or anticipating synchronization can occur; see, e.g.,
the relaxation coefficients is the only way to achieve syn- 23] and references therein.

chronization. Consider synchronization between the lkeda Nayt we consider the case of time-dependent delay time

systems (t). First we notice that as in the case of time-independent
dx ) delay times 2=K is the condition of existence for thg
g GXFmsinX,, =x,, synchronization manifold. Next applying the general
formula (8) derived earlier in the paper we write the suffi-
dy . cient stability condition for the synchronization manifold
—=—ay+msiny_ +Kx,. (13)  =x, in the following form:
dt 1 2 2
First we consider the case of constant feedback-delay time a§<1 _de;:t)> > me. (15)

and show thay=x72 is the retarded synchronization manifold
if the parameter mismatch,—«;=26 is equal to the cou-
pling rateK [22]. This can be seen by the dynamics of the
errorA:xTZ—y:

As an example consider the following sinusoidal form of the
variable delay time:

7(t) = 7o+ 7, Sin (wt), (16)

(14) where 7y is the zero-frequency component, is the ampli-

o - N _tude, andw/27 is the frequency of the modulation. Then for
The sufficient stability condition for the retarded synchroni-the concrete form of variable delay tini6) the sufficient
zation manifoldy=x,, can be written asa+8=a,>|m|.  stability condition(15) can be written as
Thus, we find that the retarded chaos synchronization mani- 5 5
fold y=x, occursonly under parameter mismatch—i.ey; ay[1 - 7w cogwt)] > M. (17)

# a,. By analyzing the corresponding error dynamics onenymerical simulations fully confirm the analytical results.
can also establish that without the parameter mlsmatch—l.eEqs_(l), (2), (10), and(11) were simulated using thepe23
ozlz-012:oz—.ne|thery:x72_r1 nor y=Xx,, i the synchroni- program[24] in MATLAB 6 for @=5, =1, =2, m;=m,
zation manifold. We also emphasize that for baitr a; and =20, andk=30. Figure 1 shows the time series of the driver
@y # a, system(13) admits neither complet@ve notice that  x(t). Figure 2 shows generalized synchronization between
for special case of,=0y=x,, is the complete synchroniza- andy.

tion manifold, which exists itv; # a,) nor anticipatingchaos

synchronization. We emphasize that this result is due to th§, GENERALIZED SYNCHRONIZATION BETWEEN THE

A
it == (a+ A+ (26~ K)X,,+ mcosx, .. A, .

linear coupling between the synchronized systems. The im- NONLINEARLY COUPLED IKEDA SYSTEMS
portance of the role of the form of coupling between the
synchronized systems is underlined [i8]. In the case of In this section we study synchronization between the fol-

nonlinear (sinusoidal coupling for identical drive and re- lowing nonlinearly coupled Ikeda systems:
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FIG. 2. Numerical simulation of systeni$) and (2): general-
ized synchronization betweenandy. The parameters arg =1,
7=2, =5, m;=20, m,=20, andK=30. Dimensionless units.

dx :
a:—ax+ my sinx, , (18)
dy . .
a:—ay+mzsmyT2+KsmxT3. (19
As established 23], for 7;=7, under conditions
m=m+K, (20)

systemg18) and(19) allow for the synchronization manifold
Y= Xepr, - (21)

The stability condition of the synchronization manifqil)

PHYSICAL REVIEW E71, 016201(2005

w x"—".‘ -

FIG. 3. Numerical simulation of systeni&8) and (19): gener-
alized synchronization betweeqs_T1 andy. The parameters are
n=1, =2, 3=3, a=5,m;=20,m,=3, andK=17. Dimensionless
units.

dz . .
. =-aztmpsinz, + K SinX..

at (24

One finds thay=z is the complete synchronization manifold
between system@3) and(24). The corresponding sufficient
synchronization condition reads>|m,|. We conclude that
for /=7, we find complete synchronization between sys-
tems(18) and(19); for m, # 7, one observes generalized syn-
chronization between systeris8) and(19). Equationg18),
(19), (23), and (24) were simulated fore=5, 7,=1, 7,=2,
73=3, m=20,m,=3, andK=17. Figure 3 shows the gener-
alized synchronization betweeq . andy.

IV. GENERAL APPROACH

Consider complete synchronization between the linearly

was derived using the error dynamics approach and thggypled time-delayed systems of general form

Krasovskii-Lyapunov functional:

dx
a>|my. (22) dr My, (25)
We note that forr;> 7y, 3=7;, and 3< 7y, EQ. (21) is the q
retarded, complete, and anticipating synchronization mani- av__ ay +myf(y,) +K(x—y), (26)
fold [11,23, respectively. dt
For 7 # 7, obviously the manifold21) is longer no the o ) ) ) )

synchronization manifold. To investigate generalized synWWheref is d|fferent|ablf generic nonlinear function.
chronization betweer andy variables we have to consider ~ One finds that forr; =7, under the condition
complete synchronization between the systems:

P s g my = my, (27)

d
Y ay+my, siny,2+ K sinsz,

dt 23

Egs.(25) and(26) admit the complete synchronization mani-
fold
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y =X. (28) d_')[/ = - ay + mzf(yrz) + Kf(XT3)! (36)

The sufficient stability condition of Eq28) can be derived d

from the Krasovskii-Lyapunov functional approach: o ) )
it is straightforward to establish that fat;=,, under the

a+K>|mf'(x,)]. (29 condition

Here f’ stands for the derivative dof with respect to time. m —K=m (37)

For 7 # 7, EQ. (28) is no longer the synchronization mani- ! 2

fold. ) ) ) o Egs.(35) and(36) admit the synchronization manifold
To investigate generalized synchronization between sys-

tems(25) and(26) we apply an auxiliary system approach to

- . o Y= Xepr, - (39
investigate complete synchronization between systems: 31
dy The sufficient stability condition of the synchronization
ar Wt myf(y,,) + K(x-y), (30 manifold (38) is a> Imyf’(x.,)|. As for 7 # 7, Eq. (38) is

not a synchronization manifold; we investigate the case of

dz generalized synchronization by studying the possibility of
G ezt myf(z;) + K(x~2). (31)  complete synchronization between the following systems:
We find that the complete synchronization manifgklz be- dy
tween systemg30) and (31) is stable under the condition dt ~ ay+ me(yTz) + Kf(xrs)’ (39

a> |m1f’(y72)|. This is also the existence condition of gener-
alized synchronization between syste(@5) and(26).

Next consider a situation where a time-delayed chaotic d_Z: - az+myf(z,) + KF(x.,). (40)
master(driver) system dt 2 3
9(= - ax+myf(x.) (32)  The complete synchronizatioy=z is stable under the con-
dt ' dition a>|m,f’(y, )|. Under this condition there is general-
drives a nonidentical slavgesponsgsystem ized synchronization between syste(85) and (36).
dy
P myf(y;) +Kx,,. (33 V. CONCLUSIONS
By investigating the error Signﬁ:x,z—y dynamics we find We conclude the paper with the following remarks. Usu-

that under the conditions,—a;=K, m=m, y=x, is the ally parameter mismatches are considered to have a detri-
’ Ty

synchronization manifold and the manifold is sufficiently mental _effect_ on the synchronlzatlon quality betwee_n
stable if a,>|k;f'(X,.,.)|. We note that systemé32) and coupled identical systems; larger values of parameter mis-
172

(39 admit the retarded chaos synchronization manipid [EU R0 SR SE0 SR e s
=X,. only under parameter mismatch—i.ey, # «,. We also ; It appears y ;

2 : . . synchronization in time-delayed systems and parameter mis-
notice that without the parameter mismatch—i.e;=a,

_ ther v= _ is th hronizati matches is quite intricate and complex.[Irb] it was shown
=a—NelNery=x,,, NOry=X;-- 1S e synchronization parameter mismatches can change the time shift between
manifold. Moreover, in general for boit, =a, and ay # a,

i ' e the synchronized stategknowledge of the time shift be-
systems(32) and (33) admit neither complete nor anticipat- yyeen the synchronized states is of considerable practical
ing chaossynchronization. _ importance for the message recovery and information pro-
In the case of time-dependent feedback-delay t{®  cessing using chaos control methoda. [10] we have dem-
analysis of the error dynamics for the retarded synchronizagsirated that perfect anticipating synchronization between
tion manifoldy=x, shows that the existence conditions 1o pidirectionally coupled external cavity laser diodes is
—a;=K andmy=my, y=x, hold also for the variable feed- possible in the presence of parameter mismatches. In this
back delay case. The sufficient stability condition for thepaper we have studied the relation between parameter mis-
time-delayed equationg32) and (33) with time-dependent matches and complete and generalized synchronizations us-

feedback delayr(t) can be written as ing the powerful Krasovskii-Lyapunov functional approach.
dry(t) In the example of two unidirectionally both linearly and non-
a; (1 - #) > [mlf'(le(t)+Tz)]2, (34) linearly coupled chaotic nonidentical Ikeda systems we have

shown that the presence of parameter mismatches can change
Finally considering complete synchronization between théh€ mode of synchronization from a complete to a general-
nonlinearly coupled time-delayed systems, ized one. Most importantly we have derived sufficient exis-
tence conditions for the generalized synchronization. We
have also investigated chaos synchronization in variable de-

dx
— = —ax+myf i . e
ax+myf(x.,), (35 lay time systems and found both existence and sufficient

dt
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stability conditions for the retarded synchronization manifoldstudy between systems with delay-time modulations are also
with the coupling-delay lag time. important from the application point of viey26,19.

These results are of certain importance in the context of
relations between parameter mismatches, coupling types, and
mode of synchronizations. Recent studies have disclosed that ACKNOWLEDGMENTS
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